函 数 一、幂函数定义:形如的函数称为幂函数,其中是自变量,是常数。注意:幂函数与指数函数有何不同?【思考·提示】本质区别在于自变量的位置不同,幂函数的自变量在底数位置,:归纳:幂函数图像在第一象限的分布情况如下:二、幂函数的性质归纳:幂函数在第一象限的性质:,图像过定点(0,0)(1,1),在区间()上单调递增。,图像过定点(1,1),在区间()上单调递减。探究:整数m,n的奇偶与幂函数的定义域以及奇偶性有什么关系?结果:形如的幂函数的奇偶性(1)当m,n都为奇数时,f(x)为奇函数,图象关于原点对称;(2)当m为奇数n为偶数时,f(x)为偶函数,图象关于y轴对称;(3)当m为偶数n为奇数时,f(x)是非奇非偶函数,、幂函数的图像画法:关键先画第一象限,然后根据奇偶性和定义域画其它象限。指数大于1,在第一象限为抛物线型(凹);指数等于1,在第一象限为上升的射线;指数大于0小于1,在第一象限为抛物线型(凸);指数等于0,在第一象限为水平的射线;指数小于0,在第一象限为双曲线型;四、规律方法总结:1、幂函数的图像:2、幂函数的图像:3、比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性;(2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,:一般地,如果,那么叫做的次方根,其中>1,且∈*.负数没有偶次方根;0的任何次方根都是0,记作。当是奇数时,,当是偶数时,,规定:0的正分数指数幂等于0,(1)· ;(2) ;(3) .(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,:指数函数的底数的取值范围,底数不能是负数、、指数函数的图象和性质a>10<a<1定义域R定义域R值域y>0值域y>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1) 注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;三、对数函数(一):一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:注意底数的限制,且;;:常用对数:以10为底的对数;自然对数: 真数=N=b底数指数 对数
最全的高中幂指数对数三角函数知识点总结 来自淘豆网m.daumloan.com转载请标明出处.