下载此文档

全等三角形(常见辅助线).ppt


文档分类:中学教育 | 页数:约27页 举报非法文档有奖
1/27
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/27 下载此文档
文档列表 文档介绍
ABDEFMN专题讲解——三角形辅助线的方法∟∟.,AB=AD,BC=DC,求证:∠B=∠,AB与CD交于O,且AB=CD,AD=BC,OB=5cm,,△ABC中,∠C=90o,BC=10,BD=6,AD平分∠BAC,⊥==PE如图,OC平分∠AOB,角平分线上点向两边作垂线段过点P作PF⊥OA,PG⊥OB垂足为点F,点GFGACDBEPO∠DOE+∠DPE=180°∠DOE+∠DPE=180°∟∟求证:.证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCM作DM⊥BC于M,DN⊥BA交BA的延长线于N。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)∵DN⊥BA,DM⊥BC(已知)∴∠N=∠DMB=90°(垂直的定义)在△NBD和△MBD中∵∠N=∠DMB(已证)∠1=∠2(已证)BD=BD(公共边)∴△NBD≌△MBD()12∴∠4=∠C(全等三角形的对应角相等)N43321*∴ND=MD(全等三角形的对应边相等)∵DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是Rt△在Rt△NAD和Rt△MCD中∵ND=MD(已证)AD=CD(已知)∴Rt△NAD≌Rt△MCD()∵∠3+∠4=180°(平角定义),∠A=∠3(已证)∴∠A+∠C=180°(等量代换).第三关中垂线法.△ABC中,AB>AC,∠A的平分线与BC的垂直平分线DM相交于D,过D作DE⊥AB于E,作DF⊥AC于F。求证:BE=CFABCDEFM连接DB,DC垂直平分线上点向两端连线段∟.

全等三角形(常见辅助线) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数27
  • 收藏数0 收藏
  • 顶次数0
  • 上传人相惜
  • 文件大小418 KB
  • 时间2020-08-25