聚合工艺和高危储存设施
重点参数的监控及安全控制
指导意见
(试行)
无锡市人民政府安委会专家组石油化工综合组
前言
根据国家安监总局《关于公布首批重点监管的危险化工工艺目录的通知》(安监总管三〔2009〕116号)和省安监局《关于规范化工企业自动控制技术改造工作的意见》(苏安监〔2009〕109号)等文件精神,受无锡市安监局的委托,由无锡恒禾工程咨询设计有限公司组织专家编制了《聚合工艺和高危储存设施重点参数的监控及安全控制指导意见》,并经市政府安委会专家组石化综合组专家的审定,以供有关企业和单位在实施聚合工艺和高危储存设施自动控制过程中参考。
由于编制时间比较紧,本指导意见可能会有不完善和欠缺之处,请及时反馈,以便进一步修改完善。
对于新建的聚合工艺生产装置和高危储存设施,在设计和建设阶段,应落实本指导意见中所提出的有关意见和建议。现有装置和设施的改造过程中涉及特种设备的,应严格按照特种设备的管理要求统筹进行。
2010年7月
聚合工艺和高危储存设施重点参数的监控及安全控制
指导意见(试行)
第一部分聚合工艺
聚合工艺普遍应用在塑料、合成橡胶、化学纤维、涂料等工业中,是生产高分子聚合物的主要反应。根据不同的反应机理,聚合工艺可分为逐步聚合和连锁聚合,连锁聚合中又可分为自由基型聚合、离子(阴离子或阳离子)型聚合及配位络合聚合。从聚合的方法分又可分为本体法、溶液法、乳液法、悬浮法等不同的聚合方法。
高放热、高粘度是聚合工艺共同的特点。带压操作是许多聚合工艺的操作条件,少数超高压聚合工艺其反应压力甚至超过250MPa。
表1-1 常见聚合工艺的温度/压力条件
聚合物名称
反应温度(℃)
反应压力(MPa)
聚合方法
高压聚乙烯
150~300
100~350
本体聚合
中压聚乙烯
100~270
~
溶液聚合
低压聚乙烯
50~90
常压~
溶液聚合
聚丙烯
50~80
~
溶液聚合
聚苯乙烯
80~200
常压~
本体、悬浮聚合
聚氯乙烯
40~70
~
本体、悬浮聚合
丁苯橡胶
5~12
~
乳液、溶液聚合
环氧树脂
50~155
常压
聚合工艺作为化学反应的一种,也遵循化学反应动力学的基本原理。反应动力学告诉我们,反应速度是反应物的浓度、反应级数及反应温度的函数,在反应体系中反应物的浓度越大或反应级数越高或温度越高,反应速度就越快。在浓度、反应级数一定的情况下,温度对反应速度的敏感程度,取决于该反应活化能的大小,活化能越大越敏感。如反应温度为400℃,活化能为293KJ/mol,当温度升高9℃时反应速度就提高1倍,对于放热反应而言,也就是说单位时间内反应放出的热量为原来的2倍。因此对于聚合工艺,控制反应物浓度和温度对反应的安全进行具有非常重要的意义。
从以上反应动力学的原理可知,在聚合工艺中一旦系统的移热速率跟不上反应的放热速率时,反应温度就会上升,温度上升又会使反应加速,放热速率加快,放热速度加快使系统的移热速率更加跟不上,反应温度更加升高……这样就形成了恶性循环,直至发生事故。因此反应的强放热是聚合工艺发生事故的根本原因,生产中的暴聚现象就是这种恶性循环的结果。暴聚若发生在密闭容器中会引起压力的升高而导致爆炸事故;若发生在常压容器中,会使反应液出现暴沸而产生冲料现象,当容器的通气口较小无法及时释放暴沸所产生大量的物料蒸汽时,也会因压力升高而引起爆炸。由于参加聚合工艺的原料大多为可燃、易燃易爆物质,因此无论是反应器因超压产生的物理性爆炸还是冲料都极有可能引起火灾或化学爆炸等后果更为严重的次生事故。
聚合工艺过程为反应物分子链长逐渐增长的过程,随着链的不断增长,反应器内物料的粘度不断增大。一方面液体内部的对流传热的作用越来越弱,也就是液体中心反应热不能及时传递给冷却壁面而造成中心部位过热。另一方面随着粘度的增大,冷却壁面上物料的滞留层越来越厚,
物料侧的传热膜系数越来越小,致使总传热系数也越来越小,传热速率随之越来越小,导致因热量不能及时传出而产生超温现象,从而引发事故。因此,聚合工艺物料的高粘度是使传热恶化的主要原因。
常见的聚合方法有本体聚合、溶液聚合、乳液聚合、悬浮聚合等四种。
表1-2 四种常用聚合方法的比较
聚合方法
本体法
溶液法
乳液法
悬浮法
引发剂种类
油溶性
油溶性
水溶性
油溶性
温度调节
难
稍易,溶剂为载热体
易,水为载热体
易,水为载热体
分子量调节
聚合工艺和高危储存设施 来自淘豆网m.daumloan.com转载请标明出处.