下载此文档

平面向量知识点总结(精华).doc


文档分类:中学教育 | 页数:约10页 举报非法文档有奖
1/10
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/10 下载此文档
文档列表 文档介绍

: .
平面向量知识点总结(精华)
平面向量基础知识复面向量知识点小结
一、向量的基本概念
:既有大小又有方向的量,.
注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.
举例1 已知,,则把向量按向量平移后得到的向量是_____. 结果:
:长度为0的向量叫零向量,记作:,规定:零向量的方向是任意的;
:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是);
:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;
(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,
规定:零向量和任何向量平行.
注:①相等向量一定是共线向量,但共线向量不一定相等;
②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;
③平行向量无传递性!(因为有);
④三点共线共线.
:.
举例2 如下列命题:(1)若,则.
(2)两个向量相等的充要条件是它们的起点相同,终点相同.
(3)若,则是平行四边形.
(4)若是平行四边形,则.
(5)若,,则.
(6)若, . 结果:(4)(5)
二、向量的表示方法
:用带箭头的有向线段表示,如,注意起点在前,终点在后;
:用一个小写的英文字母来表示,如,,等;
:在平面内建立直角坐标系,以与轴、轴方向相同的两个单位向量为基底,则平面内的任一向量可表示为,称为向量的坐标,叫做向量的坐标表示.
结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.
三、平面向量的基本定理
定理 设同一平面内的一组基底向量,是该平面内任一向量,则存在唯一实数对,使.
(1)定理核心:;(2)从左向右看,是对向量的分解,且表达式唯一;反之,是对向量的合成.
(3)向量的正交分解:当时,就说为对向量的正交分解.
举例3 (1)若,,,则 . 结果:.
(2)下列向量组中,能作为平面内所有向量基底的是 B
A., B., C., D.,
(3)已知分别是的边,上的中线,且,,则可用向量表示为 . 结果:.
(4)已知中,点在边上,且,,则的值是 . 结果:0.
四、实数与向量的积
实数与向量的积是一个向量,记作,它的长度和方向规定如下:
(1)模:;
(2)方向:当时,的方向与的方向相同,当时,的方向与的方向相反,当时,,
注意:.
五、平面向量的数量积
:对于非零向量,,作,,则把称为向量,的夹角.
平面向量基础知识复面向量基础知识复习
(2)已知的面积为,且,若,则,夹角的取值范围是_________

平面向量知识点总结(精华) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数10
  • 收藏数0 收藏
  • 顶次数0
  • 上传人lu2yuwb
  • 文件大小2.81 MB
  • 时间2021-06-04