质数与合数教学设计
学习目标:
①使学生掌握质数和合数的概念,知道它们之间的联系和区别。
②能正确判断一个常见数是质数还是合数。
③培养学生判断、推理的能力。
教学重点 质数和合数的概念。
教学难点 正确判断一个常见数是质数还是合数。
讲授新课
一、谈话导入
师:今天我们继续研究有关数的知识(出示数字卡片:2、13、9、12、7、16、15)
看到这些数,你想到了什么?
生:2是12的因数,12是2的倍数,13、9、7、15是奇数,2、12、16是偶数……
师:9不仅是奇数,还有一个名字叫合数;2不仅是偶数,还有一个名字叫质数。2是质数,9是合数,那么其他的数是质数还是合数呢?
今天这节课,我们就一起来研究有关质数与合数的知识。(板书课题:质数与合数)
二、动手操作,探索新知
(一)操作,感悟
师:请两个同学商量一下你们想研究哪个数。(学生商量研究的数。)
师(出示边长1厘米的正方形):今天 ,我们就借助这些小正方形帮助我们理解。
我来提出活动要求:
(1)你们研究哪个数,就从学具袋中取出几个正方形。
(2)用你们选好的正方形来拼摆长方形或正方形。能摆几种,就要摆出几种。
(3)将你摆的结果,填在表格中。
同时请你思考问题:
(1)你用几个小正方形拼出了你的长方形或正方形?
(2)你是怎样拼的?长方形的长、宽各是多少?或正方形的边长是多少?
(两个学生利用学具独立操作、拼摆。)
[通过动手操作,让学生在操作中了解事物的特征,明确正方形的个数与长方形的长与宽之间的关系。]
(二)发现图形与算式的关系
师:你们看,拼成的长方形的长、宽与正方形的个数有什么关系?
(图形消失,出示乘法算式:7=7×1。)
生:长与宽相乘就得到了正方形的个数。
师:用××个小正方形,可以拼出几个长方形?所以写出了几个乘法算式?
(学生根据自己拼摆的结果作出相应的回答。)
(三)发现算式与因数的关系
师:观察这些等式,你发现了什么?
生:(1) 有些数只能写出一个乘法算式,有的可以写出多个乘法算式;(2) 每个算式中的数,都是小正方形个数的因数。
[在操作、验证的基础上,学生逐渐发现了所用的小正方形的个数与所拼成的长方形的个数之间的关系。教师要引导学生一步一步去发现关系,并总结规律。]
三、梳理知识,归纳概念
(一)分类
师:观察这些数的因数有什么特点?
生:(1) 所有的数都有1和它本身两个因数;(2) 有的数除了1和它本身两个因数外,还有别的因数;(3) 因数的个数不同,有的有2个因数,有的有2个以上因数。
师:你们能不能将这些数分分类呢?
(学生按照因数的个数分类。)
(引导学生将有3、4、5、6个因数的合并为“有2个以上因数的”一类。)
[引导学生通过因数的个数进行分类,从而发现质数与合数的本质区别。]
(二)归纳概念
师:观察有2个因数的这一类,它们的因数有什么特点?
生:这些数只有1和它本身两个因数。 (板书:只有1和它本身两个因数。)
师:观察有2个以上因数的这一类,它们的因数有什么特点?
生:这些数除了1和它本身2个因数,还有别的因数。 (板书:除了1和它本身,还有别的因数。)
质数与合数教学设计[1] 来自淘豆网m.daumloan.com转载请标明出处.