下载此文档

《大数据》教学大纲-.docx


文档分类:高等教育 | 页数:约9页 举报非法文档有奖
1/9
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/9 下载此文档
文档列表 文档介绍
《大数据》教学大纲-20170720精品文档,仅供学习与交流,如有侵权请联系网站删除
【精品文档】第 1 页
《大数据》课程教学大纲
适合专业: 数据科学与大数据技术专业 课程编号:
先修课程: 高等数据、线性代数、JAVA 学分: 4 总学时: 64
一、课程性质、目的与要求
课程性质:专业必修课。
课程目的:通过对大数据的相关知识介绍,使学生掌握大数据的概念和原理,熟悉大数据的理论与算法,了解大数据未来发展趋势,能够利用所学知识,进行大数据应用实现和算法设计,培养学生运用大数据技术解决大数据行业应用问题。
课程要求:本课程系统介绍了大数据的理论知识和实战应用,包括大数据概念与应用、数据采集与预处理、数据挖掘算法与工具、R语言、深度学习以及大数据可视化等,并深度剖析了大数据在互联网、商业和典型行业的应用。期望学生对大数据处理技术有比较深入的理解,能够从具体问题或实例入手,利用所学的大数据知识在应用中实现数据分析和数据挖掘。
二、教学内容
理论总学时:36学时
第1章 大数据概念与应用 2学时
基本要求:熟悉大数据的概念与意义、大数据的来源、大数据应用场景及大数据处理方法等内容。
重点:大数据的定义、研究内容与应用。
难点:无。
第2章 数据采集与预处理 4学时
基本要求:熟悉常用的大数据采集工具,特别是Apache Kafka数据采集使用方法;熟悉数据预处理原理和方法,包括数据清洗、数据集合、数据转换;掌握数据仓库概念与ETL工具Kettle的实际应用。
重点:Apache Kafka数据采集、数据清洗、数据仓库与ETL工具。
精品文档,仅供学习与交流,如有侵权请联系网站删除
【精品文档】第 2 页
难点:ETL工具Kettle的实际应用。
第3章 数据挖掘算法 6学时
基本要求:熟悉常用的数据挖掘算法,内容上从分类、聚类、关联规则和预测模型等数据挖掘常用分析方法出发掌握相对应的算法,并能熟练进行数据挖掘算法的综合应用。
重点:分类算法、聚类算法、关联规则、时间序列预测。
难点:数据挖掘算法的综合应用。
第4章 大数据挖掘工具 4学时
基本要求:熟练掌握机器学习系统Mahout和大数据挖掘工具Spark Mllib下的分类算法、聚类算法、协同过滤算法的使用,并对其他数据挖掘工具有所了解。
重点:Mahout安装与使用、Spark Mllib工具的使用。
难点:Mahout和Spark Mllib工具的使用。
第5章 R语言 4学时
基本要求:了解R语言的发展历程、功能和应用领域;熟悉R语言在数据挖掘中的应用;掌握R语言在分布式并行实时计算环境Spark中的应用SparkR。
重点:R语言基本功能、R语言在数据挖掘中的应用、SparkR主

《大数据》教学大纲- 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数9
  • 收藏数0 收藏
  • 顶次数0
  • 上传人neryka98
  • 文件大小22 KB
  • 时间2021-11-23