2002年全国初中数学联合竞赛试卷
(2002年4月21日8:30—10:30)
一、选择题(本题42分,每小题7分)
1、已知a=-1,b=2-,c=-2,那么a,b,c的大小关系是( )
(A) a<b<c (B) b<a<c (C) c<b<a (D)c<a<b
2、若m2=n+2,n2=m+2(m≠n),则m3-2mn+n3的值为( )
(A) 1 (B)0 (C)-1 (D)-2
3、已知二次函数的图象如图所示,并设M=|a+b+c|-|a-b+c|+|2a+b|-|2a-b|,则( )
(A)M>0 (B)M=0 (C)M <0 (D)不能确定M为正、为负或为0
4、直角三角形ABC的面积为120,且∠BAC=90º,AD是斜边上的中线,过D作DE⊥AB于E,连CE交AD于F,则△AFE的面积为( )
(A)18 (B)20 (C)22 (D)24
5、圆O1与O2圆外切于点A,两圆的一条外公切线与圆O1相切于点B,若AB与两圆的另一条外公切线平行,则圆O1与圆O2的半径之比为( )
(A)2:5 (B)1:2 (C)1:3 (D)2:3
6、如果对于不小于8的自然数n,当3n+1是一个完全平方数是,n+1都能表示成个k完全平方数的和,那么k的最小值为( )
(A)1 (B)2 (C)3 (D)4
-1
1
y
O
x
B
A
O1
O2
二、填空题(每小题7分,共28分)
1、已知a<0,ab<0,化简, .
2、如图,7根圆形筷子的横截面圆的半径均为r,则捆扎这7根筷子一周的绳子和长度为
3、甲乙两人到特价商店购买商品,已知两人购买商品的件数相等,且每件商品的单价只有8元和9元,若两人购买商品一共花费了172元,则其中单价为9元的商品有件。
4、设N=23x+92y为完全平方数,且不超过2392,则满足上述条件的一切正整数对(x,y)共有对。
三、(本题满分70分)
1、(本题满分20分)
已知:a ,b,c三数满足方程组,试求方程bx2+cx-a=0的根。
2、(本题满分25分)
如图,等腰三角形ABC中,P为底边BC上任意点,过P作两腰的平行线分别与AB,AC相交于Q,R两点,又P`的对称点,证明:P'在△ABC的外接
全国初中数学竞赛试题及答案(2002年)[1] 来自淘豆网m.daumloan.com转载请标明出处.