下载此文档

小学奥数数论专题.doc


文档分类:幼儿/小学教育 | 页数:约21页 举报非法文档有奖
1/21
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/21 下载此文档
文档列表 文档介绍
小学奥数数论专题
名校真题 测试卷10 (数论篇一)
1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 )一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数?
[思路]:现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要具体的数字,而现在没有,所以我们选择先从数字和入手
【解】:5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8。这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989符合条件。
【例3】(★★★)由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?
【解】:各位数字和为1+3+4+5+7+8=28
所以偶数位和奇数位上数字和均为14
为了使得该数最大,首位必须是8,第2位是7,14-8=6
那么第3位一定是5,第5位为1
该数最大为875413。
[拓展]:一个三位数,它由0,1,2,7,8组成,且它能被9整除,问满足条件的总共有几个?

【例4】(★★)一个学校参加兴趣活动的学生不到100人,其中男同学人数超过总数的4/7 ,女同学的人数超过总数的2/5 。问男女生各多少人?
【来源】:06年理工附入学测试题
【解】:男生超过总数的4/7就是说女生少个总数的3/7,这样女生的范围在2/5~3/7之间,同理可得男生在4/7~3/5之间,这样把分数扩大,我们可得女生人数在28/70~30/70之间,所以只能是29人,这样男生为41人。
2 质数与合数(分解质因数)

【例5】(★★★)2005×684×375×□最后4位都是0,
请问□里最小是几?
【解】:先分析1×2×3×4××10的积的末尾共有多少个0。由于分解出2的个数比5多,这样我们可以得出就看所有数字中能分解出多少个5这个质因数。而能分解出5的一定是5的倍数。注意:5的倍数能分解一个5,25的倍数分解出2个5,125的倍数能分解出3个5……最终转化成计数问题,如5的倍数有[10/5]=2个。
2005=5×401 684=2×2×171
375=3×5×5×5前三个数里有2个质因子2,4个质因子5,要使得乘积的最后4位都是0
应该有4个质因子2和4个质因子5,还差2个质因子。因此□里最小是4。
[拓展]:2005×684×375×□最后4位都是0,且是7的倍数,问□里最小是_____
【例6】(★★★)03 年101中学招生人数是一个平方数,04年由于信息发布及时,04年的招生人数比03年多了101人,也是一个平方数,问04年的招生人数?
【解】:看见两个平方数,发现跟平方差相关,这样我们大胆的设03年的为A,04年的为B,从中我们发现04年的比03年多101人,这样我们可以列式子B- A=101
此后思路要很顺,因为看见平方差只有一种方法那就是按公式展开,
所以B- A=(A+B)(A-B)=101,可见右边的数也要分成2个数的积,还得考虑同奇偶性,但101是个质数,所以101只能分成101×1,这样A+B=101,A-B=1,所以A=50,B=51,所以04年的招生人数为51×51=2601。
[拓展]:一个数加上10,减去10都是平方数,问这个数为多少?(清华附中测试题)
约数和倍数
【例7】(★★★)从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断的重复,最后剪得的正方形的边长是多少毫米?
【解】:边长是2002和847的最大公约数,可用辗转相除法求得 (2002,847)=77
所以最后剪得的正方形的边长是77毫米。
辗转相除示例:
2002÷847=2…308 求2个数的最大公约数,就用大数除以小数
847÷308=2…231 用上一个式子的除数除以余数一直除到除尽为止
308÷231=1…77 用上一个式子的除数除以余数一直除到除尽为止
231÷77=3 最后一个除尽的式子的除数就是两个数的最大公约数

小学奥数数论专题 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数21
  • 收藏数0 收藏
  • 顶次数0
  • 上传人幸福人生
  • 文件大小4.20 MB
  • 时间2022-03-01