下载此文档

基于Mask R-CNN的密集木材检测分割方法.pdf


文档分类:通信/电子 | 页数:约8页 举报非法文档有奖
1/8
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/8 下载此文档
文档列表 文档介绍
林业工程学报,2022,7(2) : 135-142
Journal of Forestry Engineering
DOI : .2096-
基于M-stacked logs using the Mask Region-based
Convolutional Neural Network (Mask R-CNN) instance segmentation model is proposed to explore how the instance
segmentation model can be used in scenes of dense-stacked logs. The feasibility of dividing stacked logs of various si­
zes is expected to realize the intelligent measurement of log diameters, improve the efficiency of log diameter meas­
urements and reduce the cost of measurement. In this dense-stacked logs detection and segmentation task, the
difficulty lies in the detection of dense-stacked small logs and large logs. Due to the poor performance of the original
Mask R-CNN model in detection and segmentation of dense-stacked small log and large log targets, this study optimi­
zes the model parameters on the basis of the original Mask R-CNN model in four aspects, including multi-scale train­
ing of the input image size model, increasing the sample number of the model Region proposal network and Region­
based Convolutional Neural Network modules, increases the input size of the model training image, and performs ef­
fective data augmentation on the training images. In view of these four optimization methods and other log detection

基于Mask R-CNN的密集木材检测分割方法 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数8
  • 收藏数0 收藏
  • 顶次数0
  • 上传人刘禅
  • 文件大小1.80 MB
  • 时间2022-06-06