下载此文档

2022届福建省泉州市高三第二次联考数学试卷含解析.doc


文档分类:中学教育 | 页数:约21页 举报非法文档有奖
1/21
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/21 下载此文档
文档列表 文档介绍
2021-2022高考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试线的方程为,恒过定点,
即直线过圆心,
则直线截圆所得弦长为4.
故选:C.
【点睛】
本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.
2.A
【解析】
根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.
【详解】
解:因为函数为偶函数,
所以函数的图象关于对称,
因为对任意, ,都有,
所以函数在上为减函数,
则,
解得:.
即实数的取值范围是.
故选:A.
【点睛】
本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.
3.B
【解析】
双曲线的渐近线方程为,由题可知.
设点,则点到直线的距离为,解得,
所以,解得,所以双曲线的实轴的长为,故选B.
4.A
【解析】
先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.
【详解】
由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,
所以该四棱锥的体积为.
故选A
【点睛】
本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.
5.D
【解析】
利用一元二次不等式的解法和集合的交运算求解即可.
【详解】
由题意知,集合,,
由集合的交运算可得,.
故选:D
【点睛】
本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.
6.A
【解析】
对函数求导,可得,即可求出,进而可求出答案.
【详解】
因为,所以,则,解得,则.
故选:A.
【点睛】
本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题.
7.C
【解析】
根据程序框图程序运算即可得.
【详解】
依程序运算可得:

故选:C
【点睛】
本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.
8.D
【解析】
先将所求问题转化为对任意恒成立,即得图象恒在函数
图象的上方,再利用数形结合即可解决.
【详解】
由得,由题意函数得图象恒在函数图象的上方,
作出函数的图象如图所示
过原点作函数的切线,设切点为,则,解得,所以切
线斜率为,所以,解得.
故选:D.
【点睛】
本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.
9.C
【解析】
逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.
【详解】
①为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.
②由题意知.因为当时,,
又,所以在上恒成立,所以函数在上为单调递减函数,正确.
③由题意知,当时,,此时在上为增函数,不合题意,故.
令,解得.因为在上不单调,所以在上有解,
需,解得,正确.
④令,得.根据函数的单调性,在上的最大值只可能为或.
因为,,所以最大值为64,结论错误.
故选:C
【点睛】
本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.
10.B
【解析】
画出几何体的直观图,计算表面积得到答案.
【详解】
该几何体的直观图如图所示:
故.
故选:.
【点睛】
本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.
11.C
【解析】
设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.
【详解】
设点的坐标为,直线的方程为,即,
设点到直线的距离为,则,解得,
另一方面,由点到直线的距离公式得,
整理得或,,解得或或.
综上,满足条件的点共有三个.
故选:C.
【点睛】
本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题.
12.A
【解析】
画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.
【详解】
画出所表示的区域,易知,
所以的面积为,
满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,
由几何概型的公式可得其概率为,
故选A项.
【点睛】

2022届福建省泉州市高三第二次联考数学试卷含解析 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数21
  • 收藏数0 收藏
  • 顶次数0
  • 上传人开心果
  • 文件大小2.19 MB
  • 时间2022-07-24