下载此文档

八年级数学下册第十六章分式知识点总结.doc


文档分类:中学教育 | 页数:约10页 举报非法文档有奖
1/10
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/10 下载此文档
文档列表 文档介绍
该【八年级数学下册第十六章分式知识点总结 】是由【莫比乌斯】上传分享,文档一共【10】页,该文档可以免费在线阅读,需要了解更多关于【八年级数学下册第十六章分式知识点总结 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。分式的知识点解析与培优
分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
判断分式的依据:
例:下列式子中,、8a2b、-、、、2-、、、、、、、中分式的个数为()
A、2B、3C、4D、5
练习题:(1)下列式子中,是分式的有.
;⑵;⑶;⑷;
⑸;⑹.(7)(8)(9)
分式有意义的条件是分母不为零;【B≠0】
分式没有意义的条件是分母等于零;【B=0】
分式值为零的条件分子为零且分母不为零。【B≠0且A=0即子零母不零】
:(≠0)
例1:当x时,分式有意义;
例2:分式中,当时,分式没有意义
例3:当x时,分式有意义。
例4:当x时,分式有意义
例5:,满足关系时,分式无意义;
例6:无论x取什么数时,总是有意义的分式是()
.
例7:使分式有意义的x的取值范围为( )A. B. C. D.
例8:分式无意义,则x的值为()
.-1或-3C.-
三、分式的值为零:
使分式值为零:令分子=0且分母≠0,注意:当分子等于0时,看看是否使分母=0了,如果使分母=0了,那么要舍去。
例1:当x时,分式的值为0.
例2:当x时,分式的值为0.
例3:如果分式的值为零,则a的值为()
.-2D..以上全不对
例4:能使分式的值为零的所有的值是()
=-=0或x=
例5:要使分式的值为0,则x的值为()-3 .-3D2
例6:若,则a是()

例9:当X=时,分式的值为零。
例10:已知-=3,则=。
三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
例1:;;
如果成立,则a的取值范围是________;
例2:
例3:如果把分式中的a和b都扩大10倍,那么分式的值()
A、扩大10倍B、缩小10倍C、是原来的20倍D、不变
例4:如果把分式中的x,y都扩大10倍,则分式的值()


例5:如果把分式中的x和y都扩大2倍,即分式的值()
A、扩大2倍;B、扩大4倍;C、不变;D缩小2倍
例6:如果把分式中的x和y都扩大2倍,即分式的值()
A、扩大2倍;B、扩大4倍;C、不变;D缩小2倍
例7:如果把分式中的x和y都扩大2倍,即分式的值()
A、扩大2倍;B、扩大4倍;C、不变;D缩小倍
例8:若把分式的x、y同时缩小12倍,则分式的值( )

例9:若x、y的值均扩大为原来的2倍,则下列分式的值保持不变的是()
A、B、C、D、
例10:根据分式的基本性质,分式可变形为()
.
例11:不改变分式的值,使分式的分子、分母中各项系数都为整数,;
例12:不改变分式的值,使分子、分母最高次项的系数为正数,=。
,使分子、分母
最高次项的系数为正数,则是()。
四、分式的约分:关键先是分解因式。
分式的约分及最简分式:
①约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分
②分式约分的依据:分式的基本性质.
③分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.
④约分的结果:最简分式(分子与分母没有公因式的分式,叫做最简分式)
约分主要分为两类:第一类:分子分母是单项式的,主要分数字,同字母进行约分。
第二类:分子分母是多项式的,把分子分母能因式分解的都要进行因式分解,再去找共同的因式约去。
例1:下列式子(1);(2);(3);(4)中正确的是()A、1个B、2个C、3个D、4个
例2:下列约分正确的是()
A、;B、;C、;D、
例3:下列式子正确的是()
.
例4:下列运算正确的是()
B、
C、D、
例5:化简的结果是()
.
例7:约分:;=;;。
例8:约分:=;;;;___________
例9:分式,,,中,最简分式有()
,,,中是最简分式的有()。
:(1);(2)
:(1),;
(2),
+3x+1=0,求x2+的值.
+=3,求的值.
分式的通分及最简公分母:
通分:主要分为两类:第一类:分母是单项式;第二类:分母是多项式(要先把分母因式分解)
分为三种类型:“二、三”型;“二、四”型;“四、六”型等三种类型。
“二、三”型:指几个分母之间没有关系,最简公分母就是它们的乘积。
例如:最简公分母就是。
“二、四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母。
例如:最简公分母就是
“四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母要有独特的;相同的都要有。
例如:最简公分母是:
这些类型自己要在做题过程中仔细地去了解和应用,仔细的去发现之间的区别与联系。
例1:分式的最简公分母()
B.
.
例2:对分式,,通分时,最简公分母是()

例3:下面各分式:,,,,其中最简分式有()个。

例4:分式,的最简公分母是.
例5:分式a与的最简公分母为________________;
例6:分式的最简公分母为。
五、分式的运算:分式的乘,除,乘方以及加减
分式的乘法:乘法法测:·=.
分式的除法:除法法则:÷=·=
分式的乘方:求n个相同分式的积的运算就是分式的乘方,用式子表示就是()n
分式的乘方,是把分子、:()n=(n为正整数)
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减。
混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。
例题:
计算:(1)(2)
(3)(4)
(5)(6)
(8)
(9)(10)
求值题:(1)已知:,求的值。
已知:,求的值。
(3)已知:,求的值。
乘方例题:
计算:(1)(2)=
=(4)=
(5)
(6)
(7)已知:求的值。
(8).当分式--的值等于零时,则x=_____。
(9).已知a+b=3,ab=1,则+的值等于_____。
(10).先化简,再求值:-+,其中a=。
8、分式的加减:
分式加减主体分为:同分母和异分母分式加减。
1、同分母分式不用通分,分母不变,分子相加减。
2、异分母分式要先通分,在变成同分母分式就可以了。
通分方法:先观察分母是单项式还是多项式,如果是单项式那就继续考虑是什么类型,找出最简公分母,进行通分;如果是多项式,那么先把分母能分解的要因式分解,考虑什么类型,继续通分。
分类:第一类:是分式之间的加减,第二类:是整式与分式的加减。
例1:=例2:=
例3:=
例4:=
例5计算:(1)
(2)(3)
(4)--.
例6:化简++等于()
.
例7:(2)
(4)
-(6)
(8)
(9)(10)+.
例8:计算的结果是()
ABCD
例9:请先化简:,然后选择一个使原式有意义而又喜欢的数代入求值.
例10:已知:求的值。
分式的混合运算:
例1:
例2:
例3:
例4:例5:
例6:
例7:
例8:
10、分式求值问题:
例1:已知x为整数,且++为整数,求所有符合条件的x值的和.
例2:已知x=2,y=,求÷的值.
例3:已知实数x满足4x2-4x+l=O,则代数式2x+的值为________.
例4:已知实数a满足a2+2a-8=0,求的值.
例5:若求的值是().
.
例6:已知,求代数式的值
例7:先化简,再对取一个合适的数,代入求值.
练习题:
,其中x=5.
,其中a=5
(3),其中a=-3,b=2
(4);其中a=85;
(5),其中x=-1
(6)先化简,再求值:÷(x+2-).其中x=-2.
(7)
(8)先化简,,再选择一个你喜欢的数代入求值.
11、分式其他类型试题:
例1:观察下面一列有规律的数:,,,,,,……根据其规律可知第n个数应是___(n为正整数)
例2:观察下面一列分式:根据你的发现,它的第8项是,第n项是。
例3:当x=_______时,分式与互为相反数.
例4:在正数范围内定义一种运算☆,其规则为☆=,根据这个规则☆的解为( )

例5:已知,
则;
例6:已知,则( )
A. .
例7:已知,求的值;
例8:设,则的值是()
.
12、化为一元一次的分式方程:
(1)分式方程:含分式,并且分母中含未知数的方程——分式方程。
(2)解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
(3)解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;(4)验根.
例1:如果分式的值为-1,则x的值是;
例2:要使的值相等,则x=__________。
例3:当m=_____时,方程=2的根为.
例4:如果方程的解是x=5,则a=。
例5:(1)(2)
例6:解方程:
例7:已知:关于x的方程无解,求a的值。
例8:已知关于x的方程的根是正数,求a的取值范围。
例9:若分式与的2倍互为相反数,则所列方程为___________________________;
例10:当m为何值时间?关于的方程
的解为负数?
例11:解关于的方程
例12:解关于x的方程:
例13:当a为何值时,的解是负数?
例14:先化简,再求值:,其中x,y满足方程组
例15知关于x的方程的解为负值,求m的取值范围。
练习题:
(1)(2)(3)
(4)(5)(6)
(7)
(8)
(9)
13、分式方程的增根问题:
(1)增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
(2)分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
例1:分式方程+1=有增根,则m=
例2:当k的值等于时,关于x的方程不会产生增根;
例3:若解关于x的分式方程会产生增根,求m的值。
例4:取时,方程会产生增根;
例5:若关于x的分式方程无解,则m的值为______。
例6:当k取什么值时?分式方程有增根.
例7:若方程有增根,则m的值是().-
例8:若方程有增根,则增根可能为()
A、0B、2C、0或2D、1
15、分式的应用题:
(1)列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.
(2)应用题有几种类型;基本公式是什么?基本上有四种:
:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.
:在数字问题中要掌握十进制数的表示法.
:基本公式:工作量=工时×工效.
:v顺水=v静水+=v静水-v水.
工程问题:
例1:一项工程,甲需x小时完成,乙需y小时完成,则两人一起完成这项工程需要______小时。
例2:小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等。设小明打字速度为x个/分钟,则列方程正确的是()
.
.
例3:某工程需要在规定日期内完成,如果甲工程队独
做,恰好如期完成;如果乙工作队独做,则超过规定日
期3天,现在甲、乙两队合作2天,剩下的由乙队独做,
恰好在规定日期完成,
为x天,下面所列方程中错误的是()
.
例4:一件工程甲单独做小时完成,乙单独做小时完成,甲、乙二人合作完成此项工作需要的小时数
是( ).
.
例5:赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,,平均每天读多少页?如果设读前一半时,平均每天读x页,则下列方程中,正确的是()
B、
C、D、
例6:某煤厂原计划天生产120吨煤,由于采用新的技术,每天增加生产3吨,因此提前2天完成任务,列出方程为()
AB
CD
例7:某工地调来72人参加挖土和运土工作,已知3人挖出的土1人恰好能全部运走,问怎样调配劳动力才使挖出来的土能及时运走且不窝工?要解决此问题,①;②;③;④.
例8:八(1)、八(2)两班同学参加绿化祖国植树活动,已知八(1)班每小时比八(2)班多种2棵树,八(1)班种66棵树所用时间与八(2)班种60棵树所用时间相同,求:八(1)、八(2)两班每小时各种几棵树?
例9:某一一项工程预计在规定的日期内完成,如果甲独做刚好能完成,如果乙独做就要超过日期3天,现在甲、乙两人合做2天,剩下的工程由乙独做,刚刚好在规定的日期完成,问规定日期是几天?
例10:服装厂接到加工720件衣服的订单,预计每天做48件,正好可以按时完成,后因客户要求提前5天交货,则每天应比原计划多做多少件?
例11:为加快西部大开发的步伐,决定新修一条公路,甲、乙两工程队承包此项工程。如果甲工程队单独施工,则刚好可以按期完成;如果乙工程队单独施工就要超过6个月才能完成。现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则也刚好可以按期完成。问师宗县原来规定修好这条公路需多长时间?
例12:某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共4350元;乙、丙两队合做10天完成,厂家需付乙、丙两队共4750元;甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队共2750元。
(1)求甲、乙、丙各队单独完成全部工程各需多少天?
(2)若工期要求不超过20天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由。
价格价钱问题:
例1:“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x人,则所列方程为 ( )
A. . D.
例2:用价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料,其每千克售价比甲种涂料每千克售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克的售价是多少元?若设这种新涂料每千克的售价为x元,则根据题意可列方程为________.
例3:某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙同种工种各招聘多少人时,可使得每月所付的工资最少?
例4:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次捐款人数多20人,而且两次人均捐款额恰好相等。那么这两次各有多少人进行捐款?
例5:随着IT技术的普及,,由于团体购买,结果每台电脑的价格比计划降低了500元,?若每台电脑每天最多可使用4节课,这些电脑每天最多可供多少学生上微机课?(该校上微机课时规定为单人单机)
例6:光明中学两名教师带领若干名三好学生去参加夏令营活动,联系了甲、乙两家旅游公司,甲公司提供的优惠条件是:1名教师收行业统一规定的全票,其余的人按折收费,乙公司则是:,那么参加活动的学生人数是多少人?
例7:某商厦用8万元购进奥运纪念运动休闲衫,面
市后供不应求,
衬衫,所购数量是第一批购进数量的2倍,但单价贵
了4元,商厦销售这种运动休闲衫时每件定价都是58
元,最后剩下的150件按八折销售,很快售完,请问
在这两笔生意中,商厦共赢利多少元?
顺水逆水问题:
例1:A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9
小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()
A、B、
C、D、
例2:一只船顺流航行90km与逆流航行60km所用的时间相等,若水流速度是2km/h,求船在静水中的速度,设船在静水中速度为xkm/h,则可列方程()
=B、=
C、+3=D、+3=
例3:轮船顺流航行66千米所需时间和逆流航行48千米所需时间相同,已知水流速度是每小时3千米,求轮船在静水中的速度。
行程问题:
例1:在一段坡路,小明骑自行车上坡的速度为每小时V1千米,下坡时的速度为每小时V2千米,则他在这
段路上、下坡的平均速度是每小时()
千米B、千米
C、千米D、无法确定
例2:甲、乙两人分别从两地同时出发,若相向而行,则小时相遇;若同向而行,( )


例3:八年级A、,A班学生步行出发半小时后,B班学生骑自行车开始出发,结果两班学生同时到达石湖公园,如果骑自行车的速度是步行速度的3倍,求步行和骑自行车的速度各是多少千米/小时?
例4:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度。
例5:甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,,从甲站到乙站的时间缩短了11小时,求列车提速后的速度。
数字问题:
例1:一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于,求这个分数.
例2:一个两位数,个位数字是2,如果把十位数字与
个位数字对调,所得到的新的两位数与原来的两位数
之比是7:4,求原来的两位数。
例3:一个分数的分母加上5,分子加上4,其结果仍
是原来的分数,求这个分数。
例4:一个两位数,十位上的数字比个位上的数字小2,
个位上的数字加上8以后去除这个两位数时,所得到
的商是2,求这个两位数。
16、公式变形问题:
例1:一根蜡烛在凸透镜下成实像,物距为U像距为V,凸透镜的焦距为F,且满足,则用U、V表示F应是()
(A)(B)(C)(D)
例2:已知公式(),则表示的公式是()
B.
.
例3:一根蜡烛在凸透镜下成一实像,物距u,像距v和凸透镜的焦距f满足关系式:
+=.若f=6厘米,v=8厘米,则物距u=厘米.
例4:已知梯形面积S、a、b、h都大于零,下列变形错误是()
B.
.
例5:已知,则M与N的关系为()
>=<.
六、任何一个不等于零的数的零次幂等于1即;
当n为正整数时,(
,则等于()。
.
,则等于()。

:
(1) (2)
七、正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)
(1)同底数的幂的乘法:;
(2)幂的乘方:;
(3)积的乘方:;
(4)同底数的幂的除法:(a≠0);
(5)商的乘方:(b≠0)
八、科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法。
1、用科学记数法表示绝对值大于10的n位整数时,其中10的指数是。
2、用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)。
,人类的DNA是很长的链,最短的22号染色体也长达3000000个核苷酸,这个数用科学记数法表示是___________。

,用科学记数法表示这个数为____。

八年级数学下册第十六章分式知识点总结 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数10
  • 收藏数0 收藏
  • 顶次数0
  • 上传人莫比乌斯
  • 文件大小959 KB
  • 时间2022-10-27
最近更新