下载此文档

全国名校高考专题训练9-立体几何解答题3(数学).doc


文档分类:中学教育 | 页数:约25页 举报非法文档有奖
1/25
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/25 下载此文档
文档列表 文档介绍
全国名校高考专题训练09立体几何
三、解答题(第三部分)
51、
(河南省开封市2008届高三年级第一次质量检)如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点。
(1)求证:AF//平面PCE;
(2)若二面角P—CD—B为45°,AD=2,CD=3,求点F到平面PCE的距离。
证:(1)取PC中点M,连ME,MF
∵FM//CD,FM=,AE//CD,AE=
∴AE//FN,且AE=FM,即四边形AFME是平行四边形
∴AE//EM,
∵AF平面PCEAF//平面PCE
解:(2)∵PA⊥平面AC,CD⊥AD,
∴CD⊥PD
∴∠PDA是二面角P—CD—B的平面角,
∴∠PDA=45°
∴△PAD是等腰Rt∠,而EM//AF。
又∵AF⊥CD
∴AF⊥面PCD,而EM//AF
∴EM⊥面PCD
又EM面PEC,
∴面PEC⊥面PCD
在面PCD内过F作FH⊥PC于H则FH为点F到面PCE的距离
由已知PD=
∵△PFH∽△PCD


52、(河南省濮阳市2008年高三摸底考试)如图,在多面体ABCDE中,AE⊥面ABC,BD∥AE,且AC=AB=BC=BD=2,AE=1,F为CD中点.
(1)求证:EF⊥面BCD;
(2)求面CDE与面ABDE所成的二面角的余弦值.
53、(河南省许昌市2008年上期末质量评估)如图,在正三棱柱ABC-A1B1C1中,BB1=BC=2,且M是BC的中点,1上.
(Ⅰ)试确定点N的位置,使AB1⊥MN;
(Ⅱ)当AB1⊥MN时,求二面角M-AB1-N的大小.
54、(黑龙江省哈尔滨九中2008年第三次模拟考试)已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,
A
B
C
A1
B1
C1
O
且侧面底面.
(1)证明:点在平面上的射影为的中点;
(2)求二面角的大小;
(3)求点到平面的距离.
(1)证明:过B1点作B1O⊥BA。∵侧面ABB1A1⊥底面ABC
∴A1O⊥面ABC ∴∠B1BA是侧面BB1与底面ABC倾斜角
∴∠B1BO= 在Rt△B1OB中,BB1=2,∴BO=BB1=1
又∵BB1=AB,∴BO=AB ∴O是AB的中点。
即点B1在平面ABC上的射影O为AB的中点 …………4分
(2)连接AB1过点O作OM⊥AB1,连线CM,OC,
∵OC⊥AB,平面ABC⊥平面AA1BB1 ∴OC⊥平面AABB。
∴OM是斜线CM在平面AA1B1B的射影∵OM⊥AB1
∴AB1⊥CM ∴∠OMC是二面角C—AB1—B的平面角
在Rt△OCM中,OC=,OM=
∴∠OMC=cosC+sin2
∴二面角C—AB1—B的大小为 …………8分
(3)过点O作ON⊥CM,∵AB1⊥平面OCM,∴AB1⊥ON
∴ON⊥平面AB1C。∴ON是O点到平面AB1C的距离
连接BC1与B1C相交于点H,则H是BC1的中点
∴B与C1到平面ACB1的相导。
又∵O是AB的中点∴B到平面AB1C的距离
是O到平面AB1C距离的2倍
是G到平面AB1C距离为 …………12分
55、(黑龙江省哈师大附中2008届高三上期末)如图,正方形ABCD中,AC∩BD=O,PO⊥平面ABCD,PO=AD=,点E在PD上,PE:ED=2:1。
(1)证明:PD⊥平面EAC;
(2)求二面角A—PD—C的余弦值;
(3)求点B到平面PDC的距离。
解:(1)
(2)∠CEA为二面角A—PD—C的平面角,
(3)点B到平面PDC的距离为
56、(湖北省八校高2008第二次联考)S
Q
D
A
B
P
C
如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形为菱形,,为的中点,为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小.
解:(1)证明取SC的中点R,连QR, DR.
由题意知:PD∥BC且PD=BC;
QR∥BC且QP=BC,
QR∥PD且QR=PD.
PQ∥DR, 又PQ面SCD,
PQ∥面SCD. …………(6分)
(2)法一:连接SP,
.

. ,
…………(12分)
(2)法二:以P为坐标原点,PA为x轴,PB为y轴,PS为z轴建立空间直角坐标系,
则S(),B(),C(),Q().
面PBC的法向量为(),设为面PQC的一个法向量,
由,
cos,
…………(12分)
57、(湖北省三校联合体高2008届2月测试)如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(

全国名校高考专题训练9-立体几何解答题3(数学) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数25
  • 收藏数0 收藏
  • 顶次数0
  • 上传人追风少年
  • 文件大小0 KB
  • 时间2011-08-10
最近更新