arXiv: v1 9 Jun 2006 easm that assume we () hr ntelte case latter the in where tblzro on emyidentify may we point a of stabilizer a efn ar a ah(otnos ope)plex) (continuous, each that sense the in pair, Gelfand cetfi eerh(W)i h IIpoet‘ymtyand ‘Symmetry VIDI-project the supp in is (NWO) author Research second Scientific The A (Germany). Mathematical Foundation in Minerva Research the for Center Minerva Landau Edmund ettosaentrlyprmtrzdb h e Λ set the by parameterized naturally are sentations spherical inof nian hspprw eieepii ieso formu dimension explicit derive we paper this In spherical. ersnain aigaoedmninlsbpc of subspace one-dimensional a having representations a usaeof subspace a has Let h rtato sspotdb h salSineFoundatio Science Israel the by supported is author first The 2000 o l oa fields local all For UNU IESOSADTERNON-ARCHIMEDEAN THEIR AND DIMENSIONS QUANTUM F ahmtc ujc Classification. Subject Mathematics ocnie eeaie iesosdfie ntrso evalu of terms in little defined multivariable of dimensions generalized consider little multivariable to the of degenerations ous ( lzsteGasana of Grassmannian the alizes eettosascae plex quantum irr to of associated dimensions resentations quantum are the themselves as interpretations dimensions theoretic generalized The dimensions. cal GL rsnain where presentations Abstract. n K ealclfil n let and field local a be dmninlsbpcso fixed a of subspaces -dimensional F K d , ( M F F -representations. vralclfield local a over ) F saGladpi hs soitdznlshrclfunctio spherical zonal associated whose pair Gelfand a is ) n edrv xlctdmninfrua o irreducible for formulas dimension explicit derive We ≤ M F d/ K F fie etr hc sa otoedmninl h irreduc The one-dimensional. most at is which vectors -fixed O F h qiaec lse fteirreducible the of classes equivalence the .Tegroup The 2. K = q eoe h igo neesof integers of ring the