下载此文档

《余弦定理》教学案例.doc


文档分类:中学教育 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
扬中市第二高级中学张丽【学情分析】学生已经会用正弦定理解决三角形相关问题,了解三角形边角之间存在着一定的数量关系,这为本节课的学习奠定了基础。对于正弦定理解决已知两边及夹角问题学生有一定的求知欲,这就促使学生去探索如何求解该类问题.【教学目标】知识与技能(1)掌握余弦定理的证明方法,牢记公式.(2)掌握余弦定理公式的变式,(1)使学生经历公式的推导过程,培养严谨的逻辑思维.(2)培养学生数形结合的能力.(3),感受数学思维的严谨美,通过比较余弦定理公式感受数学公式的对称美,通过比较勾股定理以及余弦定理体会一般与特殊的关系.【教学重点】余弦定理推导【教学难点】余弦定理推导及应用【教法学法】教法:一、情景教学法:创设问题情境,以学生感兴趣的,并容易理解的情景为开端,让学生在各自熟悉的场景中轻松、、启发性教学法:启发性原则是永恒的。、师生互动的探究教学法:充分给学生提供交流与归纳的空间,:根据新课程理念,结合学生自身年龄特点和思维特点,让学生通过分组讨论,汇报交流,归纳总结等方式进行学习.【教学过程】图1AB创设情景,:修建一条高速公路,,即要测量该山体两底侧A,B两点间的距离(如图1).:这是一个学生身边的实际应用问题,在其解决的过程中得到余弦定理,,:提出的方法有,先航拍,然后根据比例尺算出距离;利用等高线量出距离等;也有学生提出在远处选一点C,然后量出AC,BC的长度,再测出∠ACB.△ABC是确定的,,:(构造直角三角形)图2如图2,过点A作垂线交BC于点D,则|AD|=|AC|sinC,|CD|=|AC|cosC,|BD|=|BC|-|CD|=|BC|-|AC|cosC,所以,.图3法2:(向量方法)如图3,因为,图4所以,:(建立直角坐标系)建立如图4所示的直角坐标系,则A(|AC|cosC,|AC|sinC),B(|BC|,0),根据两点间的距离公式,可得,所以,.活动评价:,:回顾刚刚解决的问题,我们很容易得到结论:在△ABC中,a,b,c是角A,B,C的对边长,,,.正弦定理反映的是三角形中边长与角度之间的一种数量关系,因为与正弦有关,就称为正弦定理;而上面等式中都与余弦有关,:刚才问题的解题过程是否可以作为余弦定理的证明过程?设计意图:作为定理要经过严格的证明,:经过思考得出,若把解法一作为定理的证明过程,需要对角C进行分类讨论,即分角C为锐角、直角、钝角三种情况进行证明;:证明余弦定理,,我们可以将一般三角形的问题通过作高,转化为直角三角形的问题;还可以构造向量等式,然后利用向量的数量积将其数量化;还可以建立直角坐标系,借助两点间的距

《余弦定理》教学案例 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人mh900965
  • 文件大小74 KB
  • 时间2019-03-25