,。这种方法同原来的方法完全不同。新的证明方法从一个博弈游戏出发,在两个不同的数学领域间建立起了联系,非常具有启发性。A和B两个人在实数区间[0,1]上玩一个游戏。首先,A在(0,1)之间选一个数a1,然后B在(a1,1)里选一个数b1;接着,A在(a1,b1)之间选一个数a2,然后B在(a2,b1)里选一个数b2……总之,以后A和B轮流取数,选的那个数必须位于前面两次选的数之间。可以看到,序列a1,a2,a3,...是一个单增的有界序列,因此游戏无限进行下去,数列{an}最终会收敛到某一个实数c。游戏进行前,A和B约定一个[0,1]的子集S,规定如果最后c∈S,则A胜,否则B胜。Baker发现,如果S集为可数集的话,B肯定有必胜策略。如果S集可数,那么B就可以把S集里的数排列成一个序列s1,s2,s3,...。B的目标就是让序列{an}的极限不等于S集里的任一个数。考虑B的这样一个游戏策略:当B第i次选数时,如果选si合法,那么就选它(这样序列{an}就不能收敛到它了);否则如果这一步选si不合法,那就随便选一个合法的数(此时序列{an}已经不可能收敛到si了)。这种策略就可以保证A选出的数列的极限不是S集里的任一个数。有趣的事情来了。假如A和B约定好的S集就是整个实数区间[0,1],那么B显然不可能获胜;但如果[0,1]是可数集的话,B是有必胜策略的。于是我们就知道了,[0,1]是不可数集。。Cantor发现,无穷集合之间也有大小关系,他把这种大小关系叫做集合的势(cardinality)。正整数和正偶数都有无穷多个,但到底谁要多一些呢?我们认为,正整数和正偶数一样多,因为我们可以在它们之间建立起一一对应的关系(乘2除2),因此有多少个正整数就有多少个正偶数,反过来有多少个正偶数我就能找出多少个正整数。于是我们说,正整数集和正偶数集是等势的。再来想一个问题,自然数和所有整数哪个多哪个少?答案还是一样多。重新排列一下所有整数,你会看到自然数和整数之间也有一一对应的关系,它们的个数一样多,两个集合也是等势的:自然数:0,1,2,3,4,5,6,7,8,...整数:0,-1,1,-2,2,-3,3,-4,4,...Cantor还发现,有理数集与自然数集也是等势的,也就是说有理数和自然数一样多!这个证明方法可谓是数学史上真正的经典:把所有有理数写成最简分数的形式,根据分子和分母的值把它们排列成二维的阵列,然后从1/1出发沿对角线方向蛇形遍历所有的数。第i个遍历到的数与自然数i对应,正有理数集与正整数集也就有了一一对应的关系。注意这里仅仅是正有理数,不过没啥,用刚才证明整数集与自然数集等势的方法,我们也可以把正有理数扩展到全体有理数。123456789111121314151617181922122232425262728293313233343536373839441424344454647484955152535455565758596616263646566676869771727374757677787988182838485868788899919293949596
证明实数区间是不可数集 来自淘豆网m.daumloan.com转载请标明出处.