下载此文档

64多边形的内角和与外角和(2).doc


文档分类:中学教育 | 页数:约3页 举报非法文档有奖
1/3
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/3 下载此文档
文档列表 文档介绍
(2)
教学目标
(一)教学知识点
,并能准确找出多边形的外角.
,利用内角和与外角和公式解决实际问题.
(二)能力训练要求
,主动探究的习惯,进一步体会数学与现实生活的紧密联系.
,进一步发展学生的说理和简单推理的意识及能力.
(三)情感与价值观要求
(1).经历多边形外角和的探索过程,培养学生主动探索的习惯;
(2).通过对内角、外交之间的关系,体会知识之间的内在联系。.
教学重点:多边形的外角和公式及其应用.
教学难点:多边形的外角和公式的应用.
教学过程:
,引入课题
清晨,小明沿一个五边形广场周围的小跑,按逆时针方向跑步.
(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们.
(2)他每跑完一圈,身体转过的角度之和是多少?
(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5吗?你是怎样得到的?
(请同学们探讨解决,教师总结)
下面大家来看小亮的思考:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′、OB′、OC′、OD′、OE′,得到∠α、∠β、∠γ、∠δ、∠θ,其中:∠α=∠1,∠β=∠2, ∠γ=∠3,∠δ=∠4,∠θ=∠5.
大家看图,∠1、∠2、∠3、∠4、∠5不是五边形的角,那是什么角呢?
它们的和叫什么呢?
(这五个角是五边形的外角,它们的和叫外角和.)
我们这节课就来探讨多边形的外角、外角和.

那什么是多边形的外角、外角和呢?我们可类似三角形的外角定义来定义多边形的外角. 另一边的反向延长线所组成的角叫做这个多边形的外角。
在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和.
一般地,在多边形的任一顶点处按顺(逆)时针方向可作外角,n边形有n个外角.
那多边形的外角和是多少呢?我们来回忆一下:三角形的外角和为多少?(360°)
刚才我们又研究了五边形的外角和,它为360°,那大家想一想:
如果广场的形状是六边形、°吗?
(学生讨论,得出结论)
(六边形的外角和是360°,八边形的外角和是360°)
那么能不能由此得出:多边形的外角和都等于360°呢?能得证吗?
因为多边形的外角与它相邻的内角是邻补角,所以,n边形的外角和加内角和等于n·180°,内角和为(n-2)·180°,因此,外角和为:n·180°-(n-2)·180°= 360°.
性质:多边形的外角和都等于360°
由此可知,多边形的外角和与多边形的边数无关,它恒等于360°.下面大家来想一想、议一议:利用多边形外角和的结论,能不能推导多边形内角和的结论呢?
(请学生思考后回答)
(因为对于n(n是大于或等于3的整数)边形,,n边形的内角和与外角和的和为n·180°,所以,n边形的内角和就等于n·180°-360°=n·180°-2×180°=(n-2)·180°).
三.知识应用
[例1]一个多边形的

64多边形的内角和与外角和(2) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数3
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1650986****
  • 文件大小205 KB
  • 时间2021-06-06