下载此文档

实验二 离散时间傅里叶变换.doc


文档分类:高等教育 | 页数:约7页 举报非法文档有奖
1/7
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/7 下载此文档
文档列表 文档介绍
实验二离散时间傅里叶变换一、实验原理1、经由正、逆离散时间傅里叶变换表达的信号傅里叶表示式是信号分析的一个关键部分。X(?je)=??????n][xnjen?()???de)e(21][xnjj???πππXn()类似地,当LTI系统用于滤波时,作为冲击响应离散时间傅里叶变换的频率响应,提供了LTI系统简介的描述。离散时间傅里叶变换X(?je)是?的周期复值函数,周期总是2π,并且基周期通常选在区间[-π,π)上。对离散时间傅里叶变换DTFT来说有两个问题:1DTFT的定义对无限长信号是有效的。2DTFT是连续变量?的函数。在MATLAB中,任何信号(向量)必须是有限长度的,仅此就是第一点成为问题。因此,不可能使用MATLAB计算无限长信号的DTFT。有一个值得注意的例外情形,当能从变换定义式推导出解析式并只是计算它时,可以使用MATLAB计算无限长信号的DTFT。2、对于频率抽样问题。MATLAB擅长在有限网格点上计算DTFT。通常选择足够多的频率以使绘出的图平滑,逼近真实的DTFT。对计算有利的最好选择是在(-π,π)区间上一组均匀地隔开的频率,或者对共轭对称变换选择[0,π]区间。采用上述抽样办法,DTFT式变成X(?je)=1...2,1,0,][)(10)/2(/2???????NkenxeXLnnNkjNkjππDTFT的周期性意味着在-π≤?<0区间上的数值是那些对k>N/2的数值。因为上市是在有限数量的频率点k?=2πk/N处计算,并在有限范围内求和,因此它是可计算的。由于信号长度必须是有限的(0≤n<L),这个求和式不适用于x[n]=nau[n]的情形。在对DTFT进行抽样时,并不要求N=L,尽管通常经由DFT进行计算。在正确应用FFT计算N点DFT前,需要对x[n]进行时间混叠。3、计算DTFT需要两个函数,MATLAB的freqz函数计算无限长信号,dtft(h,H)函数计算有限长信号的DTFT。二、实验内容1、脉冲信号的DTFT(1)要求:设矩形脉冲r[n]=10≤n<L0其他a、证明r[n]的DTFT可由2/)1()21sin()21sin()(????LjjeLeR????得出,记asinc(?,L))21sin()21sin(??L?,使用dtft函数计算12点脉冲信号的DTFT。绘出在区间-π≤?<π上对?的DTFT。把实部和虚部分开绘出。另绘出DTFT的幅度。选择频率样本的数量是脉冲长度的5到10倍,以使绘出的图看上去平滑。用不同数量的频率样本做试验。b、注意asinc函数零点的位置是规律分布的。对奇数长脉冲,比如L=15的脉冲重复进行DTFT计算并绘出幅度,同样再次检验零点位置,注意峰值高度。c、对于asinc函数零点的间距与asinc函数的直流值,确定出通用规则。(2)程序a、证明:DTFT[r[n]]=)(?jeR=????????????21sin21sine)ee()ee(eee-1e-1e21j2j-2j2Lj-2Lj2j-2Lj-j-Lj-0nnj-LLL???????????b、程序M文件:function[H,W]=dtft(h,N)N=fix(N);L=length(h);h=h(:);if(N<L)errorendW=(2*pi/N)*[0:(N-1)]';mid=ceil(N/

实验二 离散时间傅里叶变换 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数7
  • 收藏数0 收藏
  • 顶次数0
  • 上传人beny00011
  • 文件大小206 KB
  • 时间2016-11-25