该【高二下知识点总结 】是由【莫比乌斯】上传分享,文档一共【9】页,该文档可以免费在线阅读,需要了解更多关于【高二下知识点总结 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。数学选修2-2知识点总结
一、导数
注1:其中是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数在处的瞬时变化率是,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.
;函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。
5、常见的函数导数和积分公式
函数
导函数
不定积分
0
————————
————————
6、常见的导数和定积分运算公式:若,均可导(可积),则有:
和差的导数运算
积的导数运算
特别地:
商的导数运算
特别地:
复合函数的导数
微积分基本定理
(其中)
和差的积分运算
特别地:
积分的区间可加性
:①求函数f(x)的导数②令>0,解不等式,得x的范围就是递增区间.③令<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
(x)的极值的步骤:(1)确定函数的定义域。(2)求函数f(x)的导数(3)求方程=0的根(4)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值
:求在上的最大值与最小值的步骤如下:⑴求在上的极值;⑵将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;
:分割近似代替求和取极限(“以直代曲”的思想)
根据定积分的定义,不难得出定积分的如下性质:
性质1
性质5若,则
①推广:
②推广:
11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.
(l)当对应的曲边梯形位于x轴上方时,定积分的值取正值,且等于x轴上方的图形面积;
(2)当对应的曲边梯形位于x轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;
当位于x轴上方的曲边梯形面积等于位于x轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积.
(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。
推理与证明知识点
:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。
归纳推理是由部分到整体,由个别到一般的推理。
归纳推理的思维过程
大致如图:实验、观察
概括、推广
猜测一般性结论
:①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。
观察、比较
联想、类推
推测新的结论
:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。
:三段论
20.“三段论”可以表示为:①大前题:M是P②小前提:S是M ③结论:S是P。
其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。
,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。
“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。
,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。要注意叙述的形式:要证A,只要证B,,不要将它们割裂开。
24反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。
(1)假设命题结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确,即所求证命题正确。
26常见的“结论词”与“反义词”
原结论词
反义词
原结论词
反义词
至少有一个
一个也没有
对所有的x都成立
存在x使不成立
至多有一个
至少有两个
对任意x不成立
存在x使成立
至少有n个
至多有n-1个
p或q
且
至多有n个
至少有n+1个
p且q
或
:正难则反
(1)与已知条件矛盾:(2)与已有公理、定理、定义矛盾;(3)自相矛盾.
(只能证明与正整数有关的数学命题)的步骤(1)证明:当n取第一个值时命题成立;(2)假设当n=k(k∈N*,且k≥n0)时命题成立,证明当n=k+(1),(2)可知,命题对于从n0开始的所有正整数n都正确 [注]:常用于证明不完全归纳法推测所得命题的正确性的证明。
数系的扩充和复数的概念知识点
:形如a+bi的数叫做复数,其中i叫虚数单位,叫实部,叫虚部,数集叫做复数集。
规定:a=c且b=d,强调:两复数不能比较大小,只有相等或不相等。
:
:复数与平面内的点或有序实数对一一对应。
:根据复数相等的定义,任何一个复数,都可以由一个有序实数对唯一确定。由于有序实数对与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。这个建立了直角坐标系来表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴。实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。
(绝对值)与复数对应的向量的模叫做复数的模(也叫绝对值)记作。由模的定义可知:
、减法运算及几何意义①复数的加、减法法则:,则。注:复数的加、减法运算也可以按向量的加、减法来进行。
②复数的乘法法则:。
③复数的除法法则:其中叫做实数化因子
:两复数互为共轭复数,当时,它们叫做共轭虚数。
常见的运算规律
设是1的立方虚根,则,
选修2-3知识点总结
计数原理
1、分类加法计数原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有MN种不同的方法,那么完成这件事情共有M
1+M2+……+MN种不同的方法。
2、分步乘法计数原理:做一件事,完成它需要分成N个步骤,做第一步有m1种不同的方法,做第二步有M2不同的方法,……,=M1M2...MN种不同的方法。
3、排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列
4、排列数:
5、组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
6、组合数:
7、二项式定理:
8、二项式通项公式
:
展开式的二项式系数是,,,…,.可以看成以为自变量的函数,定义域是,
(1)“等距离”的两个二项式系数相等(∵).
(2)增减性与最大值:当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值.
(3)各二项式系数和:∵,
令,则
第二章随机变量及其分布
知识点:
随机变量:如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,、Y等或希腊字母ξ、η等表示。
离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
3、离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn
X取每一个值xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X的概率分布,简称分布列
4、分布列性质①pi≥0,i=1,2,… ;②p1+p2+…+pn=1.
5、二点分布:如果随机变量X的分布列为:
其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布
6、超几何分布:一般地,设总数为N件的两类物品,其中一类有M件,从所有物品中任取n(n≤N)件,这n件中所含这类物品件数X是一个离散型随机变量,
则它取值为k时的概率为,
其中,且
条件概率:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,(B|A),读作A发生的条件下B的概率
公式:
相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
n次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验
11、二项分布:设在n次独立重复试验中某个事件A发生的次数,,事件A不发生的概率为q=1-p,那么在n次独立重复试验中(其中k=0,1,……,n,q=1-p)
于是可得随机变量ξ的概率分布如下:
这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数
12、数学期望:一般地,若离散型随机变量ξ的概率分布为
则称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望或平均数、均值,。
13、方差:D(ξ)=(x1-Eξ)2·P1+(x2-Eξ)2·P2+......+(xn-Eξ)2·Pn叫随机变量ξ的均方差,简称方差。
14、集中分布的期望与方差一览:
期望
方差
两点分布
Eξ=p
Dξ=pq,q=1-p
二项分布,ξ~B(n,p)
Eξ=np
Dξ=qEξ=npq,(q=1-p)
15、正态分布:
若概率密度曲线就是或近似地是函数
的图像,其中解析式中的实数是参数,分别表示总体的平均数与标准差.
则其分布叫正态分布,f(x)的图象称为正态曲线。
16、基本性质:
①曲线在x轴的上方,与x轴不相交.
②曲线关于直线x=对称,且在x=时位于最高点.
③当时,曲线上升;当时,、右两边无限延伸时,以x轴为渐近线,向它无限靠近.
④当一定时,,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.
⑤当σ相同时,正态分布曲线的位置由期望值μ来决定.
⑥正态曲线下的总面积等于1.
17、3原则:
从上表看到,%,%由于这些概率很小,,通常认为这些情况在一次试验中几乎是不可能发生的.
高二下知识点总结 来自淘豆网m.daumloan.com转载请标明出处.