初中三角函数
正弦和余弦
例1 已知0°≤α≤90°.(1)求证:sin2α+cos2α=1;
(2)求证:sinα+cosα≥1,讨论在什么情形下等号成立;
(3)已知sinα+cosα=1,求sin3α+cos3α的值.
证明(1)如图6-1,当0°<α<90°时,sinα=BC/AB,cosα=AC/AB,所以在这种情形下
当α=0°时,sinα=0,cosα=1;当α=90°,sinα=1,cosα=
sin2α+cos2α=1.
(2)如图6-1,当0°<α<90°时,sinα=BC/AB,cosα=AC/
当α=0°时,sinα+cosα=0+1=1;当α=90°时,sinα+cosα=1+0=°≤α≤90°时,总有
sinα+cosα≥1,
当并且只当α=0°或α=90°时,等号成立.
(3)由于已知sina+cosα=(2)可知α=0°或α=90°,所以总有
sin3α+cos3α=1.
例2 求证:对于0°≤α≤90°,
证法一 如图6-1,设BC=a,AC=b,AB=
当α=0°或α=90°时,容易验证以上等式仍成立.
证法二
点评 证法一是根据锐角三角函数的定义;证法二用了公式sin2α+cos2α=1.
证明一个三角恒等式成立,可变换等号左(右)端的式子,如得到等号右(左)端的式子,,也可以对等号左、右的式子都进行变换,如得到相同的式子,原恒等式就被证明了.
正切和余切
证明(1)当0°<α<90°时,如图6-2,
当α=0°时,tgα=0,sinα=0,cosα==
(2)α必须满足不等式:
0°<α<90°.
如图6-2,
所以tgα·ctgα=1.
例2 已知锐角α,且tgα是方程x2-2x-3=0的一个根,求
解法一 x2-2x-3=0的两根为3和-=3.
如图6-3,由于tgα==3,AC=1,从而
解法二 tgα=3,用cos2α除原式分子、分母,得
证法一 如图6-2,设BC=a,AC=b,AB=c,则
所以原式成立.
证法二 等式的左端
点评 这里α≠0°,90°.
怎样理解锐角三角函数的概念?
答:现行初中几何课本中给出锐角三角函数的定义,是依据这样一个基本事实:在直角三角形中,当锐角固定时,它的对边、邻边与斜边的比值是一个固定的值.
关于这点,我们看图1,图中的直角三角形AB1C1,AB2C2,AB3C3,…都有一个相等的锐角A,,许许多多直角三角形中相等的那个锐角叠合在一起,并使一条直角边落在同一条直线上,,
B1C1∥B2C2∥B3C3∥…,
∵△AB1C1∽△AB2C2∽△AB3C3∽…,
因此,在这些直角三角形中,∠A的对边与斜边的比值是一个固定的值.
根据同样道理,由“相似形”知识可以知道,在这些直角三角形中,∠A的对边与邻边的比值,∠A的邻边与斜边的比值都分别是某个固定的值.
这样在△ABC中,∠C
初中数学三角函数 来自淘豆网m.daumloan.com转载请标明出处.