直线与平面平行的判定教学目标:一、知识与技能1、通过直观感知、操作确认,理解直线与平面平行的判定定理并能进行简单应用2、进一步培养学生观察、发现问题的能力和空间想像能力二、过程与方法1、启发式。以实物(教室等)为媒体,启发、诱思学生逐步经历定理的直观感知过程。2、指导学生进行合情推理。对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题、教师予以指导,帮助学生合情推理、澄清概念、加深认识、正确运用。三、情感态度与价值观1、让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力。2、在培养学生空间想象能力的同时,养成学生合情推理的探究精神。教学的重点与难点:教学重点:通过直观感知、操作确认,归纳出直线和平面平行的判定及其应用。教学难点:直线和平面平行的判定定理的探索过程及其应用。教学过程设计:(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示)位置关系公共点符号表示图形表示我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a??提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。[设计意图:通过提问,学生复面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。](二)判定定理的探求过程1、直观感知提问:在长方体ABCD-A1B1C1D1中,1与BB1、AA1的位置关系,1//侧面ABB1A1的条件是什么?1[设计意图:利用学生熟悉的几何模型吸引学生,唤起学生对旧知识的回忆,为新课做铺垫。从实际背景出发,直观感知直线与平面平行的位置关系。]2、操作实验演示教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。[设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]3、探究思考(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②平面内一条直线③这两条直线平行(2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面平行吗?4、归纳确认:(多媒体幻灯片演示)直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。简单概括:(内外)线线平行?线面平行符号表示:ab aa b?? ????? ????温馨提示:“三个条件”缺一不可。作用:判定或证明线面平行。关键:在平面内找(或作)出一条直线与平面外的直线平行。思想:空间问题转化为平面问题(三)定理运用,问题探究(多媒体幻灯片演示)(1)下列命题的真假?说明理由:①如果一条直线不在平面内,则这条直线就与平面平行()②过直线外一点可以作无数个平面与这条直线平行()③一直线上有二个点到平面的距离相等,则这条直线与平面平行()(2)若直线a与平面?内无数条直线平行,则a与?的位置关系是(
四季沐歌牌一体式PP滤芯检验报告 来自淘豆网m.daumloan.com转载请标明出处.