席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即:某单位席位分配数=某单位总人数比例´总席位如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗?下面来看一个学院在分配学生代表席位中遇到的问题:某学院按有甲乙丙三个系并设20个学生代表席位。它的最初学生人数及学生代表席位为系名甲乙丙总数学生数1006040200学生人数比例100/20060/20040/200席位分配106420后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为系名甲乙丙总数学生数1036334200学生人数比例103/20063/20034/,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。为改变这一情况,学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有系名甲乙丙总数学生数1036334200学生人数比例103/20063/20034/,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。这个结果也说明按惯例分配席位的方法有缺陷,请尝试建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题。模型构成先讨论由两个单位公平分配席位的情况,设单位人数席位数每席代表人数单位Ap1n1单位Bp2n2要公平,应该有=,但这一般不成立。注意到等式不成立时有若>,则说明单位A吃亏(即对单位A不公平)若<,则说明单位B吃亏(即对单位B不公平)因此可以考虑用算式来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为n1=n2=10,p1=120,p2=100,算得p=2另两个单位的人数和席位为n1=n2=10,p1=1020,p2=1000,算得p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:若则称为对A的相对不公平值,记为若则称为对B的相对不公平值,记为由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。确定分配方案:使用不公平值的大小来确定分配方案,不妨设>,即对单位A不公平,再分配一个席位时,关于,的关系可能有1. >,说明此一席给A后,对A还不公平;2. <,说明此一席给A后,对B还不公平,不公平值为3. >,说明此一席给B后,对A不公平,不公平值为4.<,不可能上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。用不公平值的公式来决定席位的分配,对于新的席位分配,若有则增加的一席应给A,反之应给B。对不等式rB(n1+1,n2)<rA(n1,n2+1)进行简单
公平的席位分配问题 来自淘豆网m.daumloan.com转载请标明出处.