兰州十一中教案教师:2014~. ,,、探索、验证切线长定理活动中通过相互间的合作与交流,、解决问题的过程,激发学生学数学的兴趣,使学生积极参与、. ,~2015学年度第二学期续页教学过程教学 第一环节设置情境,引入新课活动内容:问题:有一天,同学们去王老师家做客,王老师正在洗锅,就问:谁能测出这个锅盖的半径,就可以得到一根雪糕,同学们都跃跃欲试,但老师家里只有一个曲尺,到底谁能得到这根雪糕呢?这里让学生们小组讨论,那么,该如何测量这个锅盖的半径呢?学生们众说纷纭,可能会利用90°的圆周角所对的弦是直径来作答,也有可能会利用曲尺的两边与圆构造正方形来解答,哪一种方法更好呢?ABOPCDABOP教师引导学生发现A、B分别为⊙O与PA、PB的切点,连结OB,OA,则四边形OBAP是正方形,所以,圆的半径为A点或B点的刻度,PA=°,是否还能得到PA=PB?第二环节:新课讲解(一)、切线长定义1、板书定义:从圆外一点可以引圆的两条切线,这一点和切点之间线段的长度叫做圆的切线长2、剖析定义:(1)找出中心词,把定义进行缩句.(线段的长叫做切线长)(2)定义中的“线段”具有什么特征?①在圆的切线上;②两个端点一个是切点,、在图形中辨别:(1)已知:如图1,PC和⊙O相切于点A,点P到⊙O的切线长可以用哪一条线段的长来表示?(线段PA)(2)已知:如图2,PA和PB分别与⊙O相切于点A、B,点P到⊙O的切线长可以用哪一条线段的长来表示?(线段PA或线段PB)(3)如图2,思考:点P到⊙O的切线长可以用三条或三条以上不同的线段的长来表示吗?这样的线段最多可以有几条?为什么?(4)既然点P到⊙O的切线长可以用两条不同的线段的长来表示,那么这两条线段之间一定存在着某种关系,是什么关系呢?我们来探索一下,出示探索问题1,从而进入定理教学.(二)、切线长定理:1、探索问题1:从⊙O外一点P引⊙O的两条切线,切点分别为A、B,那么线段PA和PB之间有何关系?探索步骤:(1)根据条件画出图形;(2)度量线段PA和PB的长度;(3)猜想:线段PA和PB之间的关系;(4)寻找证明猜想的途径;(5)在图3中还能得出哪些结论?并把它们归类.(6)上述各结论中,你想把哪个结论作为切线长的性质?:定理教学的方式是学生自主探索,,等学生猜想出结论后,再明确仅凭观察、度量、利用圆的对称性,通过折叠,猜想并不能说明结论的正确性,还需证明结论的正确性,,再让学生探索更多的结论,并由(6),、猜想、验证、最
37切线长定理 来自淘豆网m.daumloan.com转载请标明出处.