【数学归纳法】总结归纳法
【数学归纳法】总结归纳法
归纳法。归纳论证是一种由个别到一般的论证方法。它通过许多个别的事例或分论点,然后归纳出它们所共有的特性,从而得出一个一般性的结论。归纳法可以先举事例再归纳结论,也可以先提出结论再举例加以证明。前者即我们通常所说之归纳法,后者我们称为例证法。例证法就是一种用个别、典型的具体事例实证明论点的论证方法。归纳法是从个别性知识,引出一般性知识的推理,是由已知真的前提,引出可能真的结论。它把特性或关系归结到基于对特殊的代表(token)的有限观察的类型;或公式表达基于对反复再现的现象的模式(pattern)的有限观察的规律。例如,使用归纳法在如下特殊的命题中:
冰是冷的。
在击打球杆的时候弹子球移动。
推断出普遍的命题如:
所有冰都是冷的。或: 在太阳下没有冰。
对于所有动作,都有相同和相反的重做动作。
人们在归纳时往往加入自己的想法,而这恰恰帮助了人们的记忆。
物理学研究方法之一。通过样本信息来推断总体信息的技术。要做出正确的归纳,就要从总体中选出的样本,这个样本必须足够大而且具有代表性。
比如在我们买葡萄的时候就用了归纳法,我们往往先尝一尝,如果都很甜,就归纳出所有的葡萄都很甜的,就放心的买上一大串。
,,,还包括提高归纳前提对结论确证度的逻辑方法,即求因果五法,求概率方法,统计方法,收集和整理经验材料的方法等.
古典归纳法
古典归纳逻辑,是由培根创立,,不完全归纳推理(简单枚举归纳和科学归纳),求因果五法等.
前分析篇 ,, 培根,他在 新工具 中,贬演绎,倡归纳,首次提出整理和分析感性材料的 三表法 ,即具有表,缺管表和程度表,认为在此基础上,通过排除归纳法等归纳方法,可以从特殊事实 逐级 上升,最后达到 最普遍的公理 .19世纪英国约翰穆勒(John Mill)是古典归纳逻辑的集大成者,他在 逻辑学体系 中,通过总结自培根以来古典归纳逻辑的研究成果,系统论述了 求因果五法 ,即求同法,求异法,求同求异并用法,共变法和剩余法,对其形式和规则做了具体规定和说明.
现代归纳法
现代归纳逻辑, 凯恩斯(Magnard Keynes)创立,由莱辛巴哈(Reichenbach),卡尔纳普(Rudolf Carnap)科恩等发展,运用概率论,形式化的公理方法等工具,探索归纳问题所取得的成果。
古典归纳逻辑曾遭到英国休谟的诘难。他认为,归纳推理的合理性在逻辑上是得不到保证的。归纳推理所依据的普遍因果律和自然齐一律,只是一种习惯性心理联想,,,不能必然地得到一般性的结论,那么个别性的前提是否可以对一般性的结论提供某种程度的证据支持,前提对于结论支持的概率是多少,这就是现代归纳逻辑即概率逻辑
【数学归纳法】总结归纳法 来自淘豆网m.daumloan.com转载请标明出处.